Cooperative effects in homogenous water oxidation catalysis by mononuclear ruthenium complexes.

نویسندگان

  • Yanyan Mulyana
  • F Richard Keene
  • Leone Spiccia
چکیده

The homogenous water oxidation catalysis by [Ru(terpy)(bipy)Cl](+) (1) and [Ru(terpy)(Me2bipy)Cl](+) (2) (terpy = 2,2':6',2''-terpyridine, bipy = 2,2'-bipyridine, Me2bipy = 4,4'-dimethyl-2,2'-bipyridine) under the influence of two redox mediators [Ru(bipy)3](2+) (3) and [Ru(phen)2(Me2bipy)](2+) (4) (phen = 1,10-phenanthroline) was investigated using Ce(4+) as sacrificial oxidant. Oxygen evolution experiments revealed that mixtures of both 2-4 and 2-3 produced more molecular oxygen than catalyst 2 alone. In contrast, the combination of mediator 4 and catalyst 1 resulted in a lower catalytic performance of 1. Measurements of the temporal change in the intensity of a UV transition at 261 nm caused by the addition of four equivalents of Ce(4+) to 2 revealed three distinctive regions-suggested to correspond to the stepwise processes: (i) [Ru(IV)=O](2+) → [Ru(V)=O](3+); (ii) [Ru(V)=O](3+) → [Ru(III)-(OOH)](2+); and (iii) [Ru(III)-(OOH)](2+) → [Ru(II)-OH2](2+). UV-Visible spectrophotometric experiments on the 1-4 and 2-4 mixtures, also carried out with four equivalents of Ce(4+), demonstrated a faster [Ru(phen)2(Me2bipy)](3+) → [Ru(phen)2(Me2bipy)](2+) reduction rate in 2-4 than that observed for the 1-4 combination. Cyclic voltammetry data measured for the catalysts and the mixtures revealed a coincidence in the potentials of the Ru(II)/Ru(III) redox process of mediators 3 and 4 and the predicted [Ru(IV)=O](2+)/[Ru(V)=O](3+) potential of catalyst 2. In contrast, the [Ru(IV)=O](2+)/[Ru(V)=O](3+) process for catalyst 1 was found to occur at a higher potential than the Ru(II)/Ru(III) redox process for 4. Both the spectroscopic and electrochemical experiments provide evidence that the interplay between the mediator and the catalyst is an important determinant of the catalytic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Water Splitting: Ruthenium Complexes for Water Oxidation

This thesis concerns the development and study of Ru-based water oxidation catalysts (WOCs) which are the essential components for solar energy conversion to fuels. The first chapter gives a general introduction about the field of homogenous water oxidation catalysis, including the catalytic mechanisms and the catalytic activities of some selected WOCs as well as the concerns of catalyst design...

متن کامل

Tunable single-site ruthenium catalysts for efficient water oxidation.

The catalytic water oxidation activity of mononuclear ruthenium complexes comprising a pyridine-functionalized abnormal triazolylidene ligand can be adjusted by modification of the triazolylidene substituents, which is readily achieved through click-type cycloaddition chemistry, affording some of the most active ruthenium catalysts known thus far for water oxidation (TONs > 400, TOFs close to 7...

متن کامل

Development Of Ruthenium/terpyridine Complexes For Water Oxidation

DEVELOPMENT OF RUTHENIUM/TERPYRIDINE COMPLEXES FORWATER OXIDATIONbyDAKSHIKA C. WANNIARACHCHIMay 2014Advisor: Prof. Cláudio VeraniMajor: Chemistry (Physical)Degree: Doctor of PhilosophyThe work presented in the dissertation is focused on developing catalysts forwater oxidation. In this regard, a series of unsysmmetrical ruthenium complexes of type[Ru(t...

متن کامل

Oxidation catalysis via visible-light water activation of a [Ru(bpy)3](2+) chromophore BSA-metallocorrole couple.

Light induced enantioselective oxidation of an organic molecule with water as the oxygen atom source is demonstrated in a system where chirality is induced by a protein, oxygen atom transfer by a manganese corrole, and photocatalysis by ruthenium complexes.

متن کامل

A self-improved water-oxidation catalyst: is one site really enough?

The homogeneous catalysis of water oxidation by transition-metal complexes has experienced spectacular development over the last five years. Practical energy-conversion schemes, however, require robust catalysts with large turnover frequencies. Herein we introduce a new oxidatively rugged and powerful dinuclear water-oxidation catalyst that is generated by self-assembly from a mononuclear catal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 18  شماره 

صفحات  -

تاریخ انتشار 2014